Design and Implementation of High-Standard Smart Farmland Monitoring System: Focus on Water Quality Assessment with International Standards

2025.04.03
ERUN

1. Introduction

Modern agriculture faces dual challenges of ensuring food security and environmental sustainability. High-standard smart farmland monitoring systems, integrating IoT, cloud computing, and data analytics, have emerged as critical tools. Among various parameters, water quality monitoring remains pivotal due to its direct impact on crop yield, soil health, and ecosystem balance. This article details a water quality-centric smart monitoring system aligned with ISO, WHO, and FAO standards, optimized for precision agriculture applications.

  


2. System Architecture

The system adopts a four-layer architecture (Figure 1):  

1. Sensor Layer: Deploys multi-parameter probes across irrigation channels and field nodes.  

2. Communication Layer: Utilizes 5G/LoRaWAN hybrid networks for real-time data transmission.  

3. Cloud Platform: Processes data via AWS IoT Core and Time Series Insights.  

4. Application Layer: Delivers actionable insights through web/mobile interfaces.  


3. Water Quality Monitoring Framework  

3.1 Key Parameters & International Standards

The system monitors parameters per ISO 5667 (water sampling) and WHO/FAO irrigation guidelines:  

Parameter

Unit

Threshold

Standard Reference

Impact

pH

-

6.0–8.5

ISO 10523:2008

Nutrient availability

Electrical Conductivity (EC)

μS/cm

≤1500

FAO Irrigation Paper 29

Soil salinity control

Dissolved Oxygen (DO)

mg/L

≥4.0

ISO 5814:2012

Aquatic ecosystem health

Turbidity

NTU

≤10

ISO 7027-1:2016

Filtration efficiency

Nitrate (NO₃⁻)

mg/L

≤50

WHO Guidelines (2011)

Eutrophication prevention

Total Dissolved Solids (TDS)

mg/L

≤2000

FAO 2017

Crop tolerance threshold

Heavy Metals (As/Cd)

μg/L

45933

WHO/FAO Codex Alimentarius

Food safety compliance


3.2 Sensor Technologies

- pH/EC: Combined glass electrode with automatic temperature compensation (ATC)  

- DO: Optical fluorescence sensors (ISO 17289:2014 compliance)  

- Heavy Metals: Microfluidic electrochemical analyzers (LOD: 0.1 μg/L)  

- TDS: Digital conductivity probes with ±2% accuracy  


4. Data Acquisition & Processing

4.1 Field Deployment Strategy

- Spatial Distribution: 1 monitoring station per 50 ha (ISO 16075-3:2015 recommendation)  

- Temporal Resolution:  

  - Basic parameters: 5-minute intervals  

  - Nutrient/heavy metals: Hourly composites  


4.2 Edge Computing  

- ARM-based gateways perform:  

  - Data validation (Grubbs’ test for outliers)  

  - Unit conversion (to WQX format)  

  - Threshold-based alerts (SMS/Email)  



5. Integration with Farming Operations

5.1 Precision Irrigation

- Soil moisture-VWC correlation model reduces water use by 35%  

- Dynamic scheduling based on:  

  - Crop evapotranspiration (ETc)  

  - 72-hour rainfall forecasts  


5.2 Fertilizer Optimization

- N-P-K adjustment algorithms using:  

  - Leaf area index (LAI) from UAV multispectral data  

  - Real-time nitrate levels in irrigation water  


6. Case Study: California Central Valley Implementation

6.1 Deployment Metrics 

- Area: 8,000 acres (almond orchards)  

- Sensors: 120 multi-parameter stations  

- Uptime: 99.2% (2022–2023)  


6.2 Performance Outcomes

Metric

Pre-System

Post-System

Improvement

Water use efficiency

0.68 kg/m3

1.12 kg/m3

0.647

Nitrate leaching

45 kg/ha

18 kg/ha

-0.6

Heavy metal incidents/year

7

0

1

Crop yield variability

±22%

±9%

-0.59


7. Compliance & Certification

- Meets GlobalGAP Integrated Farm Assurance criteria  

- Data interoperability via Open Geospatial Consortium (OGC) standards  

- Blockchain-based audit trails (Hyperledger Fabric implementation)  



8. Conclusion

This smart monitoring system demonstrates how ISO-aligned water quality management can enhance agricultural productivity while mitigating environmental risks. Future enhancements will integrate satellite-based water stress indices and nano-sensor arrays for pesticide detection.  

+86 18166600151
nawei@xayingrun.com